REV				DE	ESCRIPT	TION				DATE	PR	REP	APF	PD
С	CO-15	263								7/15/09	_	M	HV	
					DA	TE		VECTR INTERNATI a DOVER) COMPANY		MOUNT	HOLLY		S, PA 170)65
PREPARE	ED BY		Murphy		6/19	0/08	Sp	ecifi		n, Hybri		CXC)	
QUALIT	ГΥ	F	R. Smith		6/19	0/08			Hi-R	el Standar	d			
ENGINEE	RING	Н	. Wilson	1	6/19	0/08	CODE IDEN	T NO	SIZE	DWG. NO.			R	EV
							0013	6	A	DOC	C2001	.03		С
							UNSPECIFIED		RANCES:	N/A		SHE	ET 1 0F	F 20

1. SCOPE

- 1.1 General. This specification defines the design, assembly and functional evaluation of high reliability, hybrid TCXOs produced by Vectron International. Devices delivered to this specification represent the standardized Parts, Materials and Processes (PMP) Program developed, implemented and certified for advanced applications and extended environments.
- 1.2 Applications Overview. The designs represented by these products were primarily developed for the MIL-Aerospace community. The lesser Design Pedigrees and Screening Options imbedded within DOC200103 bridge the gap between Space and COTS hardware by providing custom hardware with measures of mechanical, assembly and reliability assurance needed for Military, Ruggedized COTS or Commercial environments.

2. APPLICABLE DOCUMENTS

2.1 Specifications and Standards. The following specifications and standards form a part of this document to the extent specified herein. The issue currently in effect on the date of quotation will be the product baseline, unless otherwise specified. In the event of conflict between the texts of any references cited herein, the text of this document shall take precedence.

Mil	litary

MIL-PRF-55310	Oscillators, Crystal Controlled, General Specification For
MIL-PRF-38534	Hybrid Microcircuits, General Specification For

<u>Standards</u>	
MIL-STD-202	Test Method Standard, Electronic and Electrical Component Parts
MIL-STD-883	Test Methods and Procedures for Microelectronics
MIL-STD-1686	Electrostatic Discharge Control Program for Protection of Electrical and
	Electronic Parts, Assemblies and Equipment

Vectron International

HT-67849	Test Specification, OS-68338 Hybrids, Hi-Rel Standard
QSP-90100	Quality Systems Manual, Vectron International
VL-65339	Identification Common Documents, Materials and Processes, Hi-Rel XO

3. GENERAL REQUIREMENTS

3.1 Classification. All devices delivered to this specification are of hybrid technology conforming to Type 1, Class 2 of MIL-PRF-55310. Primarily developed as a Class S specification, options are imbedded within it to also produce Class B, Engineering Model and Commercial Model devices. Devices carry a Class 2 ESDS classification.

SIZE	CODE IDENT NO.	THIRD ANGLE PROJECTION	UNSPECIFIED TOLERANCES	DWG NO.	REV.	SHEET
A	00136	<u>⊕</u> ==∃	N/A	DOC200103	C	2

- 3.2 Item Identification. External packaging choices are either metal flatpacks or DDIP with either Sinewave or CMOS logic output. Unique Model Number Series' are utilized to identify device package configurations and output waveform as listed in Table 1.
- 3.3 Absolute Maximum Ratings.

a. Supply Voltage Range (V_{CC}): -0.5Vdc to +7.0Vdc (CMOS)

b. Storage Temperature Range (T_{STG}): -65°C to +125°C

c. Junction Temperature (T_J): $+175^{\circ}C$ d. Lead Temperature (soldering, 10 seconds): $+300^{\circ}C$ e. Output Source/Sink Current ± 50 mA

- 3.4 Design, Parts, Materials and Processes, Assembly, Inspection and Test.
- 3.4.1 Design. The ruggedized designs implemented for these devices are proven in military and space applications under extreme environments. All designs utilize a 4-point crystal mount. When Class S is specified, a radiation tolerance of 100krad (Si) (RHA level R) is included without altering the device's internal topography. For all Class S and Class B products, components meet the Element Evaluation requirements of MIL-PRF-55310, Appendix B. If Design Pedigree Code "E" is chosen, Enhanced Element Evaluation per Appendix A will be performed.
- 3.4.1.1 Design and Configuration Stability. Barring changes to improve performance by reselecting passive chip component values to offset component tolerances, there will not be fundamental changes to the design or assembly or parts, materials and processes after first product delivery of that item without written approval from the procuring activity.
- 3.4.1.2 Environmental Integrity. Designs have passed the environmental qualification levels of MIL-PRF-55310. These designs have also passed extended dynamic levels of at least:

Sine Vibration: MIL-STD-202, Method 204, Condition G (30g pk.) Random Vibration: MIL-STD-202, Method 214, Condition II-J (43.92g rms) Mechanical Shock: MIL-STD-202, Method 213, Condition F (1500g, 0.5ms)

- 3.4.2 Prohibited Parts, Materials and Processes. The items listed are prohibited for use in high reliability devices produced to this specification.
 - a. Gold metallization of package elements without a barrier metal.
 - b. Zinc chromate as a finish.
 - c. Cadmium, zinc, or pure tin external or internal to the device.
 - d. Plastic encapsulated semiconductor devices.
 - e. Ultrasonically cleaned electronic parts.
 - f. Heterojunction Bipolar Transistor (HBT) technology.
- 3.4.3 Assembly. Manufacturing utilizes standardized procedures, processes and verification methods to produce MIL-PRF-55310 Class S / MIL-PRF-38534 Class K equivalent devices. MIL-PRF-38534 Group B Option 1 in-line inspection is included on radiation hardened part numbers to further verify lot pedigree. Traceability of all components and production lots are

SIZE	CODE IDENT NO.	THIRD ANGLE PROJECTION	UNSPECIFIED TOLERANCES	DWG NO.	REV.	SHEET
A	00136	⊕ □ ∃	N/A	DOC200103	C	3

- in accordance with MIL-PRF-38534, as a minimum. Tabulated records are provided as a part of the deliverable data package. Devices are handled in accordance with MIL-STD-1686 for Class 1 devices.
- 3.4.4 Inspection. The inspection requirements of MIL-PRF-55310 apply to all devices delivered to this document. Inspection conditions and standards are documented in accordance with the Quality Assurance, ISO-9001 derived, System of QSP-90100.
- 3.4.5 Test. The Screening test matrix of Table 4 is tailored for selectable-combination testing to eliminate costs associated with the development/maintenance of device-specific documentation packages while maintaining performance integrity.
- 3.4.6 Marking. Device marking shall be in accordance with the requirements of MIL-PRF-55310.
- 3.4.7 Ruggedized COTS Design Implementation. Design Pedigree "D" devices (see ¶ 5.2) use the same robust designs found in the other device pedigrees. They do not include the provisions of traceability or the Class-qualified componentry noted in paragraphs 3.4.3 and 4.1.

4. DETAIL REQUIREMENTS

- 4.1 Components
- 4.1.1 Crystals. Cultured quartz crystal resonators are used to provide the selected frequency for the devices. Premium Q swept quartz is standard for all Class S level products because of its superior radiation tolerance. For Class B level products, swept quartz is optional, as required by the customer. In accordance with MIL-PRF-55310, the manufacturer has a documented crystal element evaluation program.
- 4.1.2 Passive Components. Where possible, Established Reliability (ER) failure level R and S passive components are employed. Otherwise, all components comply with the Element Evaluation requirements of MIL-PRF-55310, Appendix B.
- 4.1.3 Class S Microcircuits. Microcircuits are procured from wafer lots that have passed MIL-PRF-55310 Lot Acceptance Tests for Class S devices. The prescribed die carries a Class 2 ESDS classification in accordance with MIL-PRF-38535. Although radiation testing is not performed at the oscillator level, Design Pedigree Codes E and R versions of this TCXO are acceptable for use in environments of up to 100 krads total dose by analysis of the individual components. Sinewave devices are assembled with all bipolar semiconductors. ACMOS devices are assembled with all bipolar semiconductors with the exception of the ACMOS chip used to provide the CMOS output. An ACMOS die from a radiation tested and certified wafer lot will be provided for all Class S versions of this TCXO. This microcircuit is certified for 100krad(Si) total ionizing dose (TID), RHA level R (2X minimum margin). NSC, as the 54ACT designer, rates the SEU LET at >40 MeV and SEL at >120MeV for the FACTTM family (AN-932). Our wafer testing does not include these parameters and determinations, but

SIZE	CODE IDENT NO.	THIRD ANGLE PROJECTION	UNSPECIFIED TOLERANCES	DWG NO.	REV.	SHEET
A	00136	⊕ □ ∃	N/A	DOC200103	C	4

- by design similarity. A copy of the parts list and materials can be provided for customer review upon request.
- 4.1.3.1 Class B Microcircuits. When specified, microcircuits assembled into Pedigree Codes B and C devices (¶ 5.2a) are procured from wafer lots that have passed MIL-PRF-55310 element evaluations for Class B devices.
- 4.1.4 Packages. Packages are procured that meet the construction, lead materials and finishes as specified in MIL-PRF-55310. Package lots are upscreened in accordance with the requirements of MIL-PRF-38534 as applicable.
- 4.1.5 Traceability. Class S active device lots are homogenous and traceable to the manufacturer's individual wafer. Swept Quartz Crystals are traceable to the quartz bar and the processing details of the autoclave lot, as applicable. All other elements and materials are traceable to their incoming inspection lots. Manufacturing lot and date code information shall be recorded, by TCXO serial number, of every component and all materials used in the manufacture of that TCXO. All semiconductors used in the manufacture of a given production lot of TCXOs shall be from the same wafer and have the same manufacturing lot date code. A production lot, as defined by Vectron, is all oscillators that have been kitted and assembled as a single group. After the initial kitting and assembly, this production lot may be divided into multiple sublots to facilitate alignment and test capacity and may be sealed at multiple times within a 13 week window.
- 4.2 Mechanical.
- 4.2.1 Package Outline. Table 1 links each Hi-Rel Standard Model Number of this specification to a corresponding package style. Mechanical Outline information of each package style is found in the referenced Figure.
- 4.2.2 Thermal Characteristics. Because these TCXOs are multichip hybrid designs, the actual θ_{jc} to any one given semiconductor die will vary, but the combined average for all active devices results in a θ_{jc} of approximately 40°C/W. The typical die temperature rise at any one given semiconductor is 2°C to 4°C. With the oscillator operating at +125°C, the average junction temperature is approximately +129°C and under no circumstance will it ever exceed the maximum manufacturer's rated junction temperature of +150°C.
- 4.3 Electrical.
- 4.3.1 Input Power. CMOS devices are designed for 3.3 or 5.0 volt dc operation, ±5%. Sinewave devices are designed for 5.0, 12.0 or 15.0 volt dc operation, ±5%.
- 4.3.2 Temperature Range. Operating range is IAW the chosen temperature stability code.
- 4.3.3 Frequency Tolerance. Temperature stability includes initial accuracy at $+25^{\circ}$ C (with EFC), load $\pm 10\%$ and supply $\pm 5\%$. All devices include an EFC pin and the external frequency

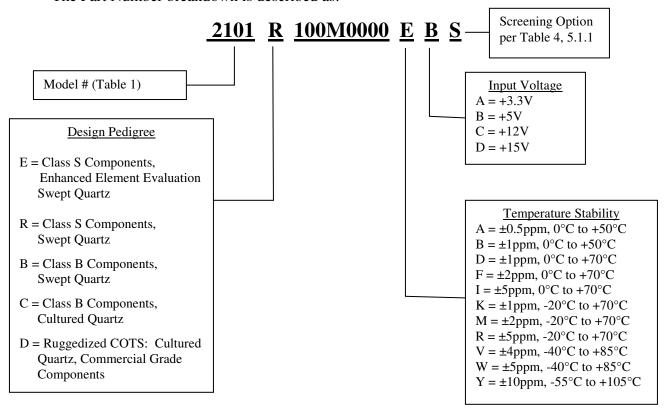
SIZE	CODE IDENT NO.	THIRD ANGLE PROJECTION	UNSPECIFIED TOLERANCES	DWG NO.	REV.	SHEET
A	00136		N/A	DOC200103	C	5

- adjustment shall be accomplished by connecting a resistor or trimmer potentiometer from it to GND. The resistance range is 0Ω or GND to $20K\Omega$ max. Nominal frequency typically occurs in the range of $7.5K\Omega$ to $12.5K\Omega$.
- 4.3.4 Frequency Aging. Aging limits, when tested in accordance with MIL-PRF-55310 Group B inspection, shall not exceed ±1 ppm for the first year and ±5 ppm for 10 years for oscillators that use crystals in the 10 MHz to 75 MHz range. For oscillators that use crystals greater than 75 MHz, the aging shall not exceed ±2 ppm for the first year and ±10 ppm for 10 years.
- 4.3.4.1 Frequency Aging Duration Option. By customer request, the Aging test may be terminated after 15 days if the measured aging rate is less than half of the specified aging rate. This is a common method of expediting 30-Day Aging without incurring risk to the hardware and used quite successfully for numerous customers. It is based on the 'least squares fit' determinations of MIL-PRF-55310 paragraph 4.8.35. The 'half the time/half the spec' limit is generally conservative as roughly 2/3 of a unit's Aging deviation occurs within that period of time. Vectron's automated aging systems acquire data every four hours, compared to the minimum MIL-PRF-55310 requirement of once every 72 hours. This makes an extensive amount of data available to perform very accurate aging projections. The delivered data would include the Aging plots projected to 30 days. If the units would not perform within that limit then they would continue to the full 30 Day term. Please advise by purchase order text if this may be an acceptable option to exercise as it assists in Production Test planning.
- 4.3.5 Operating Characteristics. See Tables 2 and 3. Waveform measurement points and logic limits are in accordance with MIL-PRF-55310. Start-up time is 10 msec typical and 30 msec maximum.
- 4.3.6 Output Load. Standard Sinewave (50 ohms) and CMOS (10kΩ, 15pF) test loads are in accordance with MIL-PRF-55310.
- 4.3.7 Phase Noise. Contact factory for typical performance. If custom and/or guaranteed performance is required, Vectron can assign a custom part number.
- 5. QUALITY ASSURANCE PROVISIONS AND VERIFICATION
- 5.1 Verification and Test. Device lots shall be tested prior to delivery in accordance with the applicable Screening Option letter as stated by the 16th character of the part number. Table 5 tests are conducted in the order shown and annotated on the appropriate process travelers and data sheets of the governing test procedure. For devices that require Screening Options that include MIL-PRF-55310 Group A Testing, the Post-Burn-In Electrical Test and the Group A Electrical Test are combined into one operation.
- 5.1.1 Screening Options. The Screening Options, by letter, are summarized as:
 - (S) MIL-PRF-55310 Class S Screening, Groups A & B QCI
 - (C) Modified MIL-PRF-55310 Class B Screening, Groups A & B QCI
 - (B) MIL-PRF-55310 Class B Screening, Groups A & B QCI

SIZE	CODE IDENT NO.	THIRD ANGLE PROJECTION	UNSPECIFIED TOLERANCES	DWG NO.	REV.	SHEET
A	00136		N/A	DOC200103	C	6

- (X) Engineering Model (EM)
- (**Z**) Commercial Model (CM)
- 5.2 Optional Design, Test and Data Parameters. The following is a list of design, assembly, inspection and test options that can be selected or added by purchase order request.
 - a. Design Pedigree (choose one as the 5th character in the part number):
 - (E) Class S components, Enhanced Element Evaluation, Swept Quartz
 - (R) Class S components, Swept Quartz
 - (B) Class B components, Swept Quartz
 - (C) Class B components, Cultured Quartz
 - (D) COTS components, Cultured Quartz
 - b. Input Voltage as the 15th character
 - c. Frequency-Temperature Slew Test
 - d. Radiographic Inspection
 - e. Group C Inspection: MIL-PRF-55310 (requires 8 pc. sample)
 - f. Group C Inspection: MIL-PRF-38534 (requires 8 pc. sample 5 pc. Life, 3 pc. RGA)
 - g. Internal Water-Vapor Content (RGA) samples and test performance
 - h. MTBF Reliability Calculations
 - i. Worst Case/Derating Analysis
 - j. Deliverable Process Identification Documentation (PID)
 - k. Customer Source Inspection (pre-cap / final)
- 5.3 Test Conditions. Unless otherwise stated herein, inspections are performed in accordance with those specified in MIL-PRF-55310. Process travelers identify the applicable methods, conditions and procedures to be used. Examples of electrical test procedures that correspond to MIL-PRF-55310 requirements are shown in Table 3.
- 5.4 Deliverable Data. The manufacturer supplies the following data, as a minimum, with each lot of devices:
 - a. Completed assembly and screening lot travelers, including rework history.
 - b. Electrical test variables data, identified by unique serial number.
 - c. Frequency-Temperature Slew plots, Radiographic data, Group C data and RGA data as required by purchase order.
- 5.5 Discrepant Material. All MRB authority resides with the procuring activity.
- 5.6 Failure Analysis. Any catastrophic failure (no output, no input current) at Post Burn-In or after will be evaluated for root cause. The customer will be notified after occurrence and upon completion of the evaluation.

6. PREPARATION FOR DELIVERY


6.1 Packaging. Devices will be packaged in a manner that prevents handling and transit damage during shipping. Devices will be handled in accordance with MIL-STD-1686 for Class 1 devices.

SIZE	CODE IDENT NO.	THIRD ANGLE PROJECTION	UNSPECIFIED TOLERANCES	DWG NO.	REV.	SHEET
A	00136		N/A	DOC200103	C	7

7. ORDERING INFORMATION

7.1 Ordering Part Number. The ordering part number is made up of an alphanumeric series of 16 characters. Design-affected product options, identified by the parenthetic letter on the Optional Parameters list (¶ 5.2a and b), are included within the device part number.

The Part Number breakdown is described as:

- 7.1.1 Model Number. The device model number is the four (4) digit number assigned to a corresponding package and output combination per Table 1.
- 7.1.2 Design Pedigree. Class S designs correspond to letters "E" and "R" and are described in paragraph 5.2a. Class B variants correspond to either letter "B" or "C" and are described in paragraph 5.2a. Ruggedized COTS, using commercial grade components, correspond to letter "D".
- 7.1.2.1 Input Voltage. Voltage is the 15th character. Voltage availability is dependant on platform.
- 7.1.3 Output Frequency. The nominal output frequency is expressed in the format as specified in MIL-PRF-55310 utilizing eight (8) characters.
- 7.1.4 Screening Options. The 16th character is the Screening Option selected from Table 4.

SIZE	CODE IDENT NO.	THIRD ANGLE PROJECTION	UNSPECIFIED TOLERANCES	DWG NO.	REV.	SHEET
A	00136	⊕ □ ∃	N/A	DOC200103	C	8

7.2 Optional Design, Test and Data Parameters. Test and documentation requirements above that of the standard high reliability model shall be specified by separate purchase order line items (as listed in § 5.2c thru k).

1/. All unassigned pins have no internal connections or ties.

HI-REL		OI ITDI IT		P	IN I/O <u>1</u> /		
STANDARD MODEL "	PACKAGE	OUTPUT	Vcc	Out	Gnd/Case	EFC	MECHANIC AL
MODEL#							OUTLINE
2101	24 Pin DDIP	CMOS	24	13	12	1	FIGURE 1
2102	32 Lead Flatpack	CMOS	11, 13	12	5	4	FIGURE 2
2103	24 Lead Flatpack	CMOS	24	13	12	1	FIGURE 3
2104	14 Lead Flatpack	CMOS	2	13	1, 3, 7, 12, 14	6	FIGURE 4
2111	24 Pin DDIP	Sine	24	13	12	1	FIGURE 1
2112	32 Lead Flatpack	Sine	11, 13	12	5	4	FIGURE 2
2113	24 Lead Flatpack	Sine	24	13	12	1	FIGURE 3
2114	14 Lead Flatpack	Sine	2	13	7, 14	6	FIGURE 4

TABLE 1 - Item Identification and Package Outline

SIZE	CODE IDENT NO.	THIRD ANGLE PROJECTION	UNSPECIFIED TOLERANCES	DWG NO.	REV.	SHEET
A	00136		N/A	DOC200103	C	9

Models 2101, 2102, 2103, 2104							
Supply Voltage Options <u>1</u> /: +3.3V or +5V							
Frequency	Currei	nt (mA)	Rise / Fall	Duty Cycle	Max CMOS		
Range	(max,	no load)	Times	(%)	Lo	ads	
(MHz)	5.25V 3.465V		(ns max.) <u>2</u> /		5.25V I	3.465V	
0.300 - 100	50	35	5	40 to 60	10	5	

- 1/. Waveform measurement points and logic limits are in accordance with MIL-PRF-55310.
- 2/. Tested with 2 CMOS loads.

TABLE 2 - Electrical Performance Characteristics

Model 2111							
Supply Voltage Options: +5V, +12V or +15V							
Frequency Range (MHz)	(max,	nt (mA) no load) 12V/15V	(0	Power Out dBm) l 12V/15V	Harmonics/ Subharmonics (>75MHz) (dBc)	Spurious (dBc)	
10 - 225	20	35	+3	+7	<-20	<-70	

TABLE 2A - Electrical Performance Characteristics

Models 2112, 2114								
Supply Voltage Options: +5V, +12V or +15V								
Frequency Range (MHz)	(max, r	nt (mA) no load) 12V/15V	(dE	wer Out Bm) 12V/15V	Harmonics/ Subharmonics (>75MHz) (dBc)	Spurious (dBc)		
10 - 150	20	35	+3	+7	<-20	<-70		

TABLE 2B - Electrical Performance Characteristics

Model 2113								
Supply Voltage Options: +12V or +15V								
Frequency Range (MHz)	(max, r	t (mA) no load) 15V	(dE	wer Out Bm) 15V	Harmonics/ Subharmonics (>75MHz) (dBc)	Spurious (dBc)		
10 - 425	25	35	+5	+7	<-20	<-70		

TABLE 2C - Electrical Performance Characteristics

SIZE	CODE IDENT NO.	THIRD ANGLE PROJECTION	UNSPECIFIED TOLERANCES	DWG NO.	REV.	SHEET
A	00136	⊕ □ ∃	N/A	DOC200103	C	10

OPERATION LISTING	REQUIREMENTS AND CONDITIONS	VECTRON TEST PROCEDURE
<u> </u>		TROCEDURE
@ all Electrical tests		
Input Current (no load)	MIL-PRF-55310, Para 4.8.5.1	GR-51681
Initial Accuracy @ Ref. Temp.	MIL-PRF-55310, Para 4.8.6	GR-51596
Output Logic Voltage Levels	MIL-PRF-55310, Para 4.8.21.3	GR-51597
Rise and Fall Times	MIL-PRF-55310, Para 4.8.22	GR-51599
Duty Cycle	MIL-PRF-55310, Para 4.8.23	GR-51601
@ Post Burn-In Electrical only		
Overvoltage Survivability	MIL-PRF-55310, Para 4.8.4	GR-37269
Initial Freq. – Temp. Accuracy	MIL-PRF-55310, Para 4.8.10.1	GR-51602
Freq. – Voltage Tolerance	MIL-PRF-55310, Para 4.8.14	GR-51602
Start-up Time (fast/slow start)	MIL-PRF-55310, Para 4.8.29	GR-61352

TABLE 3 - Electrical Test Parameters

SIZE	CODE IDENT NO.	THIRD ANGLE PROJECTION	UNSPECIFIED TOLERANCES	DWG NO.	REV.	SHEET
A	00136	<u> </u>	N/A	DOC200103	C	11

SCREENING & TESTING OPTIONS

Option Code	S	С	В	X	Z
Screening (By Class Similarity)	Mil-PRF-55310 Class 'S'	Mil-PRF-55310 Class 'B' modified	Mil-PRF-55310 Class 'B'	Engineering Model (EM)	Commercial Model (CM)
Non-Destruct Wire Bond Pull	100%	N/A	N/A	N/A	N/A
Internal Visual	M883, Method 2017 for Class 'S'	M883, Method 2017 for Class 'B'	M883, Method 2017 for Class 'B'	M883, Method 2017 for Class 'B'	AQL Sample
Stabilization Bake	48 hrs min @ +150°C	48 hrs min @ +150°C	48 hrs min @ +150°C	24 hrs min @ +150°C	24 hrs min @ +150°C
Thermal Shock	M883, Method 1011, TC 'A'	N/A	N/A	N/A	N/A
Temperature Cycling	M883, Method 1010, TC 'B'	M883, Method 1010, TC 'B'	M883, Method 1010, TC 'B'	N/A	N/A
Constant Acceleration	M883, Method 2001, TC 'A' (5000 g, Y1 Axis only)	M883, Method 2001, TC 'A' (5000 g, Y1 Axis only)	M883, Method 2001, TC 'A' (5000 g, Y1 Axis only)	N/A	N/A
Seal Test (fine & gross)	100%	100%	100%	100%	AQL Sample
PIND	M883, Method 2020, TC 'B'	M883, Method 2020, TC 'B'	N/A	N/A	N/A
Electrical Test Frequency, Output levels, Input Current	@ +25°C only	@ +25°C only	@ +25°C only	@ +25°C only	@ +25°C only
Burn-In (Powered with load)	+125°C for 240 hours	+125°C for 160 hours	+125°C for 160 hours	N/A	N/A
Electrical Test Frequency, Output levels, Input Current	@ +25°C & Temp Extremes	@ +25°C & Temp Extremes	@ +25°C & Temp Extremes	N/A	N/A
PDA	2% applies to Input Current @ +25°C	10% applies to Input Current @ +25°C	10% applies to Input Current @ +25°C	N/A	N/A
Radiographic	M883, Method 2012	N/A	N/A	N/A	N/A
Group 'A' Inspection	100%	Sample per Mil-PRF-55310	Sample per Mil-PRF-55310	N/A	N/A
Group 'B' Inspection (30 day Aging @ +70°C)	100%	Sample per Mil-PRF-55310	Sample per Mil-PRF-55310	N/A	N/A

 TABLE 4 - Screening & Test Matrix

SIZE	CODE IDENT NO.	THIRD ANGLE PROJECTION	UNSPECIFIED TOLERANCES	DWG NO.	REV.	SHEET
A	00136	⊕ □ □	N/A	DOC200103	C	12

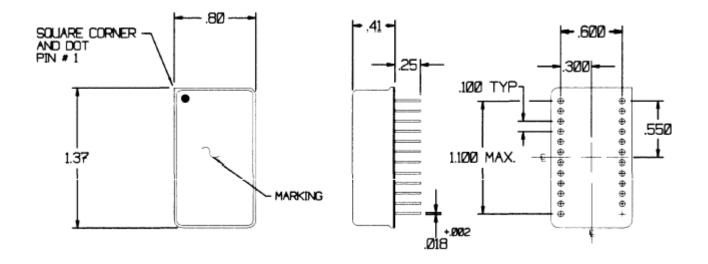
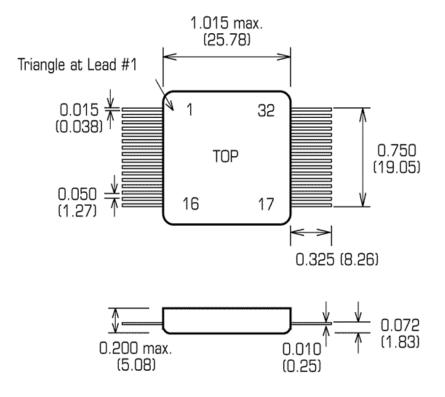



FIGURE 1
Models 2101 & 2111 Package Outline
Replaces Vectron Legacy Models 566, 567, 929 and 930

SIZE	CODE IDENT NO.	THIRD ANGLE PROJECTION	UNSPECIFIED TOLERANCES	DWG NO.	REV.	SHEET
A	00136	⊕ □ □	N/A	DOC200103	C	13

Dimensions: Inches (mm)

FIGURE 2
Models 2102 & 2112 Package Outline
Replaces Vectron Legacy Models 623 and 1623

SIZE	CODE IDENT NO.	THIRD ANGLE PROJECTION	UNSPECIFIED TOLERANCES	DWG NO.	REV.	SHEET
A	00136	⊕ □ □	N/A	DOC200103	C	14

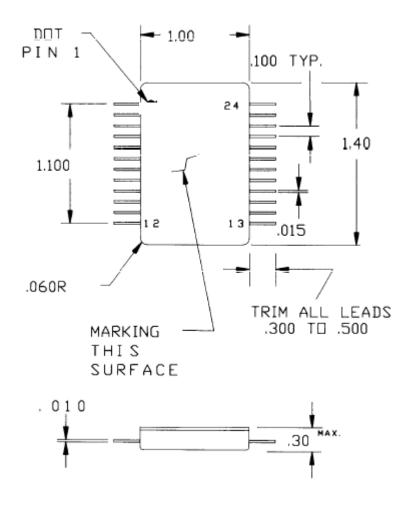


FIGURE 3 Models 2103 & 2113 Package Outline Replaces Vectron Legacy Model 568

SIZE	CODE IDENT NO.	THIRD ANGLE PROJECTION	UNSPECIFIED TOLERANCES	DWG NO.	REV.	SHEET
A	00136	9	N/A	DOC200103	C	15

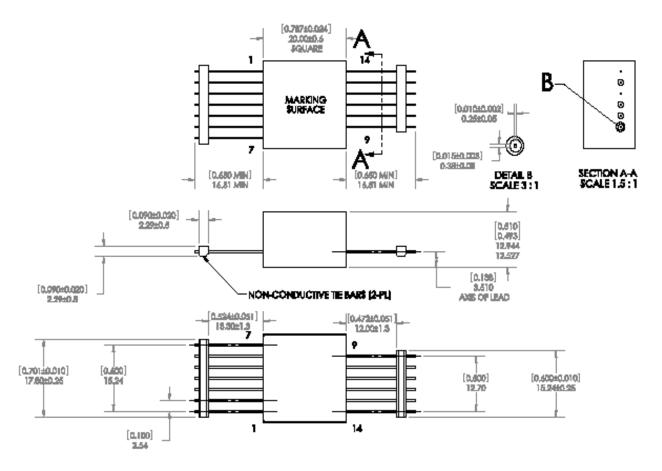


FIGURE 4
Models 2104 & 2114 Package Outline
Replaces Vectron Legacy Model 2501

SIZE	CODE IDENT NO.	THIRD ANGLE PROJECTION	UNSPECIFIED TOLERANCES	DWG NO.	REV.	SHEET
A	00136		N/A	DOC200103	C	16

Appendix A

ENHANCED ELEMENT EVALUATION

(Sheets 18 through 20)

SIZE	CODE IDENT NO.	THIRD ANGLE PROJECTION	UNSPECIFIED TOLERANCES	DWG NO.	REV.	SHEET
A	00136	⊕ □ □	N/A	DOC200103	C	17

MICROCIRCUIT ENHANCED ELEMENT EVALUATION

Subgroup	Class	Test	Mil-STD-883		Quantity	Mil-PRF- 38534 Reference
	K		Method	Condition	(accept number)	Paragraph
1	X	Element Electrical A. May perform at wafer level B. All failures shall be removed from the lot C. Perform at room ambient			100%	C.3.3.1
2	X	Element Visual	2010		100%	C.3.3.2
3	X	Internal Visual	2010		10(0) or 22(0) (See Notes 1 & 2)	C.3.3.3 C.3.3.4.2
4	X	Temperature Cycling	1010	C		C.3.3.3
	X	Mechanical Shock or Constant Acceleration	2002 2001	B, Y1 direction 3,000 G, Y1 direction	10(0) 22(0) (See Notes 1 & 2)	
	X	Interim Electrical				C.3.3.4.3
	X	Burn-In	1015	240 hours minimum at +125°C		
	X	Post Burn-In Electrical				C.3.3.4.3
	X	Steady State Life	1005			
	X	Final Electrical				C.3.3.4.3
5	X	Wire Bond Evaluation	2011		10(0) wires or 20(1) wires	C.3.3.3 C.3.3.5
6	X	SEM	2018		See method 2018 & Note 2	C.3.3.6

NOTES:

- 1. Subgroups 3, 4, & 5 shall be performed on a sample of 10 die if the wafer lot is from a QPL/QML line. If the die are from commercial wafer lots, then the sample size shall be 22 die. Die from QPL/QML wafers not meeting the QPL/QML requirements and downgraded to commercial grade shall not be used.
- 2. Subgroups 3, 4 & 5 shall be performed in the order listed in Table 1. Subgroup 6 may be performed at any time.

SIZE	CODE IDENT NO.	THIRD ANGLE PROJECTION	UNSPECIFIED TOLERANCES	DWG NO.	REV.	SHEET
A	00136	⊕ □ ∃	N/A	DOC200103	C	18

SEMICONDUCTOR ENHANCED ELEMENT EVALUATION

Subgroup	Class	Test	Mil-ST	D-750	Quantity	Mil-PRF- 38534 Reference
	K		Method	Condition	(accept number)	Paragraph
1	X	Element Electrical A. May perform at wafer level B. All failures shall be removed from the lot		Perform at room ambient	100%	C.3.3.1
2	X	Element Visual	2069, 2070, 2072, 2073		100%	C.3.3.2
3	X	Internal Visual	2069, 2070, 2072, 2073, 2074		10(0) or 22(0) (Notes 1 & 2)	C.3.3.3 C.3.3.4.2
4	X	Temperature Cycling	1051	С		C.3.3.3
	X	Surge Current (when applicable)	4066	A or B as specified		
	X	Constant Acceleration	2006	Y1 direction 20,000 G / 10,000 G for Pd≥10W	10(0) 22(0) (See Notes 1 & 2)	
	X	Interim Electrical		10_10		C.3.3.4.3
	X	High Temperature Reverse Bias (HTRB)	1039 1042 1038	A B A		
	X	Interim Electrical & Delta		Complete Within 16 hrs of HTRB completion		
	X	Burn-In 240 hours	1039, 1042 1038 1040	B A B		
	X	Post Burn-In Electrical				C.3.3.4.3
	X	Steady State Life 1000 hours	1026 1037 1042 1048			
	X	Final Electrical				C.3.3.4.3
5	X	Wire Bond Evaluation	2011		10(0) wires or 20(1) wires	C.3.3.3 C.3.3.5
6	X	SEM	2018 2077		See method 2018 or 2077 & Note 2	C.3.3.6

NOTES:

- 1. Subgroups 3, 4, & 5 shall be performed on a sample of 10 die if the wafer lot is from a QPL/QML line. If the die are from commercial wafer lots, then the sample size shall be 22 die. Die from QPL/QML wafers not meeting the QPL/QML requirements and downgraded to commercial grade shall not be used.
- 2. Subgroups 3, 4 & 5 shall be performed in the order listed in Table 1. Subgroup 6 may be performed at any time.

SIZE	CODE IDENT NO.	THIRD ANGLE PROJECTION	UNSPECIFIED TOLERANCES	DWG NO.	REV.	SHEET
A	00136	⊕ □ □	N/A	DOC200103	C	19

PASSIVE COMPONENTS ENHANCED ELEMENT EVALUATION

Part Type	Test	Requirements Paragraph	Sample Size	Allowable Rejects
Ceramic capacitors (Produc	tion lot definition shall be pe	r M55681 or M123 for	chips, or M49470 T-leve	el for stacks)
M55681 FRL S or M123 (chips)	N/A	N/A	N/A	N/A
DSCC Dwg COTS (chips)	Ultrasonic scan or CSAM	M123	100%	N/A
	Group A	M123	M123	M123
	Group B, Subgroups 1 & 2	M123	M123	M123
T-level M49470 (stacked)	N/A	N/A	N/A	N/A
General purpose M49470,	Ultrasonic scan or CSAM	M49470 for T-level	100%	N/A
DSCC dwg or COTS	Group A	M49470 for T-level	M49470 for T-level	M49470 for T-level
(stacked)	Group B, Subgroups 2, 4 & 5b	M49470 for T-level	M49470 for T-level	M49470 for T-level
Tantalum Chip Capacitors minimum Weibull C and surg	ge current option C. Production			up A in M55365 with
M55365	Group A (Weibull C minimum with surge current option C)	M55365	M55365	M55365
DSCC Dwg, COTS	Group A (Weibull C minimum with surge current option C)	M55365	M55365	M55365
	Group B	M55365	M55365	M55365
Resistor Chips (Note: Gluin without extensive design/proper M55342).				
M55342 FRL R or S	N/A	N/A	N/A	N/A
DSCC Dwg, COTS	Group A	M55342 for T-level	M55342 for T-level	M55342 for T-level
	Group B	M55342 for T-level	M55342 for T-level	M55342 for T-level
Magnetics (transformers, inc measurements as specified in STD-981 requirements.				
Custom	Group A	Mil-STD-981	Mil-STD-981	Mil-STD-981
	Group B	Mil-STD-981	Mil-STD-981	Mil-STD-981

SIZE	CODE IDENT NO.	THIRD ANGLE PROJECTION	UNSPECIFIED TOLERANCES	DWG NO.	REV.	SHEET
A	00136		N/A	DOC200103	C	20